CNES-ISRO COLLABORATIONS IN EARTH OBSERVATION : MEGHA-TROPIQUES, SARAL, TRISHNA AND THE SPACE CLIMATE <u>OBSERVATORY (SCO)</u>

PIERRE TABARY

PROGRAMME MANAGER FOR ATMOSPHERE, METEOROLOGY AND CLIMATE

CNES, DIRECTORATE FOR INNOVATION, APPLICATIONS, SCIENCE

20TH OF NOVEMBER, 2018

ISPRS EVENT ASIDE ISPRS TC V MID TERM SYMPOSIUM : INTERNATIONAL COOPERATION IN EARTH OBSERVATION

CNES in brief

- CNES = French Space Agency
- Founded in 1961 under the impulsion of the Général de Gaulle
- CNES is placed under the authority of two ministries : Defense and Research
- About 2500 staff located on 4 sites (Paris Les Halles, Paris Daumesnil, Toulouse, Kourou)
- 5 main fields of activity : Launchers / Earth Observation / Science / Telecoms / Defense

 \rightarrow CNES is responsible for proposing and implementing France's space policy at national, European and international levels

 \rightarrow CNES is also a systems architect and a technical centre responsible for innovating, designing and developing new space systems

CNES

Supervisory ministries

and its Partners

- Ministries:
 - For Ecological and Inclusive Transmon
 - for Europe and Foreign Affairs
 - For Social Welfare and Health
 - for the Interior...
- General Commissariat for Investment (CGI)
- National research organisations & Science Laboratories
- International partners (DLR, NASA, JAXA, ROSCOSMOS, CNSA, ISRO, ISA, etc.)
- EUMETSAT
- European Union (Galileo, H2020, Copernicus)
- European Space Agency (ESA) France, leading contributor, is represented by CNES
- Other space users
- Industry

Overview of the CNES missions in Earth Observation in development or operation

Atmosphere

Calipso (2006-) with NASA Megha-Tropiques (2011-) with ISRO IASI-A (2006-) with EUMETSAT IASI-B (2012-) with EUMETSAT IASI-C (2018) with EUMETSAT Strateole2 (2018-2024) Merlin (2021) with DLR Microcarb (2020) with UKSA IASI-NG (2021) with EUMETSAT

> Solid Earth SWARM (2013-) with ESA

Ocean

Saral (2013-) with ISRO
Jason 2 (2008) with EUMETSAT NASA NOAA
Jason 3 (2016-) with EUMETSAT NASA NOAA
CFOSAT (2018-) with CNSA

Ocean & Continental Surfaces SMOS (2009-) with ESA SWOT (2021) with NASA, CSA, UKSA TRISHNA (2024) with ISRO

Continental Surfaces

Pléïades 1A (2011-) with several european partners Pléïades 1B (2012-) with several european partners Venus (2017) with ISA

 \rightarrow A diversity of partners : NASA, EUMETSAT, DLR, ESA, CNSA, ISRO, ISA, ... \rightarrow All components of the Earth System are adressed, and their interactions

The CNES EO programme also includes contributions to strategic in-situ infrastructure (aircrafts, balloons, observatories, data centres, buoys) and models, phase 0/A studies, R&T, development of applications, support to research activities, ...

MEGHA-TROPIQUES

MADRAS: 5 chanels (H/V) 18,7GHz - 23,8GHZ -36,5GHz - 89GHz - 157GHz Stopped in January 2013; 18 months of data.

SCARAB: 4 chanels -Visible 0,5 à 0,7 μm -sun 0,2 à 4 μm -Total 0,2 à 200 μm -infrared 10,5 à 12,5 µm

SAPHIR: calibration at each scan; 6 bands around the H2O line at 183.31GHz

3 hurricanes observed simulatneousty in the Caribbean in 2017

- Mission aiming at studying of water and energy cycle in the tropics
- Launched on the 12th of October 2011. Mission extended to at least 2021
- Part of the **Global Precipitation** Mission (GPM) constellation with NOAA, NASA, JAXA, EUMETSAT
- The mission supports convective process, hydrological and climate studies and operational numerical weather prediction
- The orbit allows a coverage of the tropical zone between 23 °N and 23 °S, each point being revisited 2 to 6 time a day (\rightarrow diurnal cycle)
- ISRO \rightarrow Satellite
- $CNES \rightarrow Saphir \& Scarab instruments$

MEGHA-TROPIQUES A GREAT SUCCESS FOR NUMERICAL WEATHER PREDICTION

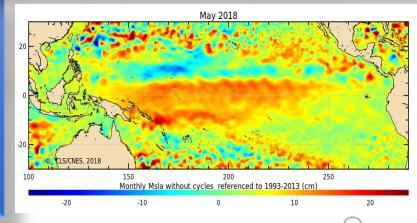
data found across 9 NWP centers in particular on

Consistent beneficial impacts of **SAPHIR** data found across 9 NWP centers, in particular on Tropical wind forecasts (up to 4 days ahead) for centers using a 4D assimilation system.

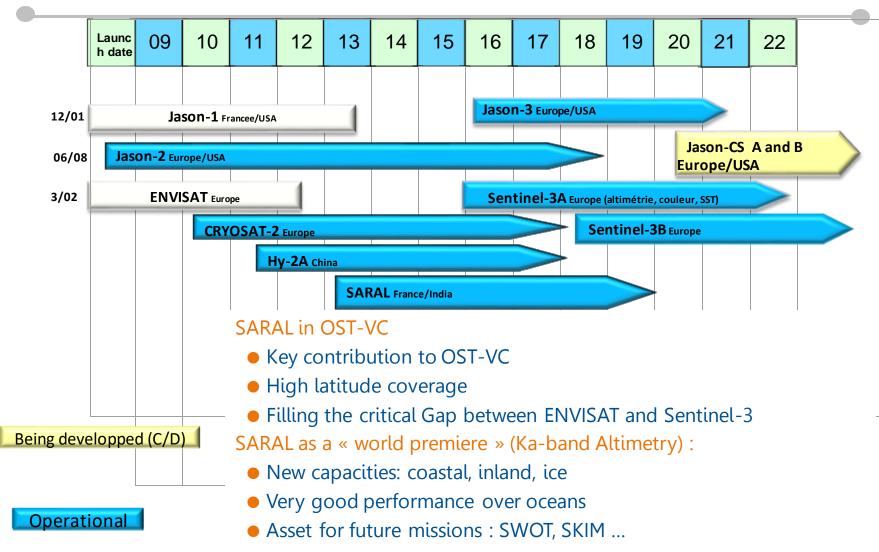
List of NWP centers assimilating SAPHIR data operationally

Numerical Weather Prediction Center	Assimilation method for SAPHIR	Associated Publication
European Centre for Medium-Range Weather Forecasts (ECMWF)	All-sky	Chambon and Geer, 2017
Fleet Numerical Meteorology and Oceanography Center (FNMOC) – US Navy	Clear-sky	Jones et al., 2017; Karpowicz et al., 2017
Japanese Meteorological Agency (JMA)	Clear-sky	Kazumori, 2016
Joined Center for Satellite Data Assimilation (JCSDA)	Clear-sky	Jones et al., 2017
Korea Meteorological Administration (KMA)	Clear-sky	Lee et al., 2018
Météo-France	Clear-sky	Chambon et al., 2015
National Center for Environmental Prediction (NCEP)	Clear-sky	Jones et al., 2017
Nationtal Centre for Medium Range Weather Forecasting (NCMRWF)	Clear-sky	Singh et al., 2017
UK Met Office	Clear-sky	Doherty et al., 2018

SARAL


- Cooperation between CNES (France) and ISRO (India)
- Launch date: February, 25th 2013
- Nominal end of the mission: 2020

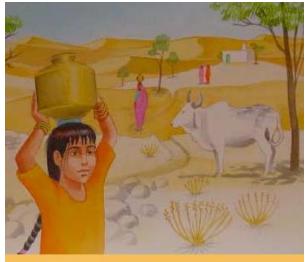
Mission objectives: High-precision Altimetry and ARGOS


- The AltiKa altimeter provides a continuity to the ocean, inland water, sea and land ice topography time series that were initiated in the nineties with the ERS and ENVISAT missions from ESA
- The ARGOS3 payload complements the constellation which gives a precise localization of thousands of ARGOS beacons for a wide range of applications and carriers (e.g. ships, scientific boys, wildlife)

Main features of SARAL

- Ka-band altimeter demonstrator: unique precision and resolution of the topography, wave height and wind-speed measurement
- High quality of altimeter and radiometer corrections in coastal regions from instrument design
- Unprecedented drifting orbit for very high precision geodetic products (e.g. bathymetry & mean sea surface)

Value of Saral in the Ocean Surface Topography Virtual Constellation


TRISHNA

cnes · · ·

TRISHNA stands for : Thermal infRared Imaging Satellite for High resolution Natural resource Assessment

Space borne mission dedicated to the remote sensing of our planet in the thermal infrared (TIR) and visible part of the electromagnetic spectrum :

- at a high spatial scale (resolution of a <u>few tens of meters</u>)
- at a high temporal scale (revisit of a few days)
- with two main objectives driven by scientific requirements:
 - Ecosystem stress and water use monitoring,
 - Coastal areas monitoring and management.
- Secondary objectives
 - Urban
 - Solid Earth
 - Cryosphere
 - Atmosphere

Trishna et le rêve de l'eau

TRISHNA – Global Mission Requirements, System and Workshare

Mission main goals

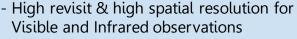
 \rightarrow Ecosystem stress and water use

 \rightarrow Coastal and inland waters monitoring

Thermal InfraRed Instrument TIR (CNES)

- Spectral Bands : 8,6µm / 9,1µm / 10,3µm / 11,5µm
- CrGSD: 57m, 1000m over Open oceans
- Cross-track view angle : +/- 34°
- 165kg, 245W, 1300*1000*550mm³

Visible and Swir Instrument, VNIR (ISRO)


- Spectral Bands :

485nm / 555nm / 650nm / 860nm & 1380nm / 1610nm

- GSD : 57m, 1000m over Open oceans
- Cross-track view angle : +/- 34°
- 30kg, 90W, 600*250*300mm3

Current Status :

- Mission definition review successful
- Phase A decided : march 2018-July 2019
- Phase B/C/D/E1 objective : 2020-2024
- Launch objective : 2024

Observation Requirements

- Global coverage
- \rightarrow Sun Synchronous Orbit 761km @ 1PM
 - \rightarrow 8-day cycle, 3-day revisit
- \rightarrow 5 years lifetime
- \rightarrow Launch in 2024

Satellite (ISRO)

- Three axis stabilized platform (IMS2)
- SADM
- 320 Mbits/s Bande X
- Launcher : PSLV

Ground Segment (CNES & ISRO)

- Ground control station & Operation: ISRO
- TIR data processing up to level 2a : CNES
- VNIR data processing up to level 2a: ISRO

SPACE CLIMATE OBSERVATORY - BACKGROUND

Potential effects of climate change

Source. Climate Change Impacts in the United States: The Third National Climate Assessment

The climate change...

International framework

Illustration by David Parkins Nature 514, 30–31, Oct. 2014

. . .

One Planet Summit – Paris, December 11th, 2017

The SCO is one of the 12 One Planet Summit commitments

Scope

Monitoring climate change

- Atmospheric CO₂ concentration,
- Global temperature, Clouds and Precipitation change,
- Sea level rise, Droughts and floods...

SCO

Tracking the impacts of climate change

- Environmental impacts
- Social and human impacts
- Biodiversity reduction
- Economical costs

Mitigating and Adapting to climate change

- Resources: land use, agricultural practices, relocation, water use...
- Population: Migration of people, food security...
 - Socio-economic development paths

Principles

Not alone !

- ✤ A country, an agency, an institution...
 - could not make it for all the World/Planet

Involvement and cooperation of wide range of bodies

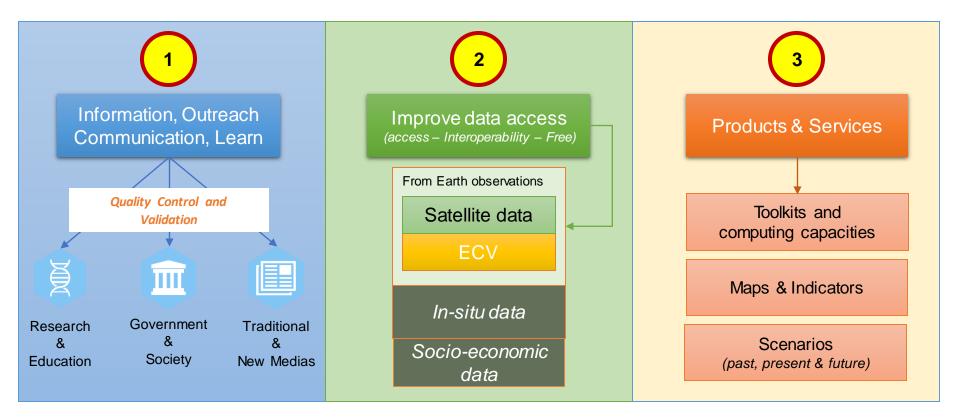
- GEO, CEOS, CGMS and UN Agencies
- National organizations, Ministries, local entities...
- Political commitment requires from those partners

Co-construction

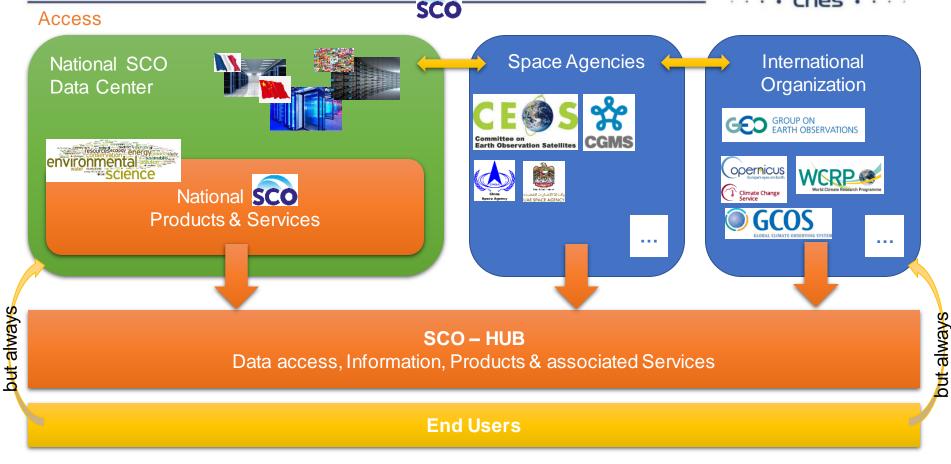
- At level of populations
 - > Metrics and social indicators to measure the appropriation and acceptance by stakeholders

SCO

- Communities of development
- Make available to others, freely
- Exchange of use, best practice
- Based on solid, open and state-of-the art scientific foundations



CO DESIGN

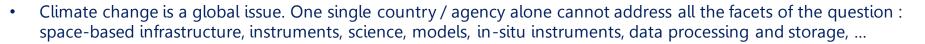


Three Objectives

SCO

Next steps :

Jan. 2019 - First International meeting – Documentation - partnership Mar. 2019 - Signature of an international charter/agreement, Nairobi


mational charter/agreement, Natrobi

WHY IS INTERNATIONAL COLLABORATION SO IMPORTANT ?

INTERNATIONAL COLLABORATION

 \rightarrow International cooperation in Earth Observation is not important ... it is <u>mandatory</u>

- Cooperation allows sharing the costs, taking the best (technology, science, infrastructure, ...) of each partner in a winwin partnership, enhancing the scientific and societal ROI by aggregating scientific and operational communities (1+1 > 2).
- A lot has been achieved over the past decades in various contexts :
 - European construction : ESA, EUMETSAT
 - Establishment of coordination groups (e.g. CEOS, CGMS, GCOS, GEO, GSICS, ...)
 - Success stories : A-Train, GPM constellation, Copernicus, coordination of GEO and LEO programmes between EUMETSAT, NOAA, CMA, JMA, ...
- ... but more should be done on :
 - the infrastructure side (precipitation, water vapour, winds) satellites + in-situ + models
 - Making satellite products better known and easier to access, especially for non specialists
 - Further integrating EO satellite data with other information such as model, in-situ, socio-economic data, in order to allow informed decision at local level

CO65

THANK YOU FOR YOUR ATTENTION

